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ABSTRACT 

A stratus surge is defmed as the apparent movement of a narrow band of stratus from 
south to north along the west coast of the United States. It is considered to be an 
anomalous mesoscale event during the summer season because macroscale winds are 
predominantly from the northwest. A simple forecast scheme to predict the initiation of 
stratus surges along the central California coast has been developed and tested. The first 
part of the forecast scheme is based on a subjective screening of satellite images to 
determine the potential for a surge event. If that potential is high, an objective evaluation 
of the 850 mb Oakland RAOB temperature and San Francisco-Santa Maria sea level 
pressure difference is made to produce a final SURGE or NO SURGE forecast. 

The forecast technique was developed using three years of data and tested independently 
on a fourth year. The subjective portion was effective in eliminating non-surge events. 
The objective portion resulted in skill scores of 0.48 for the development years and 0.56 
for the test year. All data used to make the forecast are part of the incoming NWS data 
stream. The technique is easy to apply and should serve as a basis for the development 
of similar useful methods for other locations along the coast. 

v 



STRATUS SURGE PREDICTION 
ALONG THE CENTRAL CALIFORNIA COAST 

I. INTRODUCTION 

During the summer, the central California 
coast commonly experiences fair afternoon 
skies followed by the overnight 
development of stratus due to advection 
or in situ processes, which are triggered 
by very subtle changes in synoptic and/ or 
mesoscale forces. A particularly difficult 
problem for the local forecaster is the 
prediction of the onset of stratus after 
one or more days of offshore flow and 
clear skies. One example is a unique type 
of onset known as a "stratus surge" which 
occurs when a narrow (mesoscale) band of 
marine stratus progresses northward along 
the coastline. A visible satellite image 
sequence showing the life cycle of a well­
developed stratus surge along the central 
California coast is presented in Figure 1. 
Stratus surge events, considered 
anomalies because summer season coastal 
winds are predominantly northwesterly, 
act as mesoscale weather fronts as they 
progress along the coast. Their passage is 
mar ked by rising surface pressures, 
shifting winds, falling temperatures, and 
abrupt changes in ceilings and visibilities. 

This study presents a climatology of 
stratus surge events and a forecast 
technique to predict events initiated along 
the central California coast. A brief 
review of past stratus surge studies along 
the west coast of the United States is 
discussed in section 2. The climatological 
study and a conceptual model are 
documented in section 3. The forecast 
scheme is developed and tested in section 
4. Conclusions and recommendations for 
further study are presented in section 5. 

II. BACKGROUND 

Satellite images of northward progressing 
coastal stratus along the California coast 
were first documented by the National 
Weather Service (Western Regional 
Technical Attachment 69-24), but no 

attempt was made to define or explain 
the phenomena. Jackson (1983) observed 
that the northward movement of stratus 
frequently appeared when the California 
heat trough extended to the coast, west of 
its normal inland position (see also 
Gilliland, 1980). Dorman (1985) presented 
a case study of a May 1982 event that 
progressed from Pt. Conception to Cape 
Mendocino over a three-day period and 
suggested that northward progressing 
"stratus surges" were due to coastally 
trapped Kelvin Waves. 

Mass and Albright (1986) analyzed a "very 
strong" surge that progressed from central 
California to Vancouver Island. This 
event was synoptically forced. They 
hypothesized that an upper-level low 
circulation over southern California caused 
the cool marine layer to deepen in the 
south, reversing the mesoscale pressure 
gradient along the coastline, and 
triggering the surge event. At low levels, 
a narrow zone of ageostrophic 
downgradient flow developed and 
progressed northward. The width of this 
zone was limited because geostrophic 
balance was impeded by the presence of 
the coastal mountain barrier. Mass and 
Albright (1986) reanalyzed the Dorman 
case study and showed that the Kelvin 
wave hypothesis was not consistent with 
observational evidence. 

Although the Dorman (1985) and Mass 
and Albright (1986) studies revealed some 
very important mechanisms for stratus 
surge initiation and progression, those 
studies involved two strong and 
particularly well-defined cases. In an 
attempt to generalize their results and 
apply them to the local forecast problem, 
an effort was made to define a large 
sample of stratus surges and to 
characterize them using available 
meteorological data. 



III. CLIMATOLOGICAL STUDY AND 
CONCEPTUAL MODEL 

In a preliminary unpublished 
investigation, one of the authors (Felsch) 
studied twenty-three well-defined stratus 
surges that developed along the California 
coast during the summer months (May 
through October) over the ten-year period 
197 5-1985. These surges were identified 
using visible band satellite images. The 
average surge identified in this study had 
a life span of 72 hours, and event 
durations ranged from 14 to 144 hours. 
Eleven of the 23 events did not progress 
north of the California-Oregon border. 

Surface and upper.:.air pressure patterns 
from synoptic charts prior to surge 
initiation were summarized in the 
preliminary study. A common surface 
pressure pattern featured the axis of the 
California heat trough aligned from the 
northwest corner of California through 
the Central Valley, coastward of its 
normal summer season position (Figure 
2). Two upper~air circulation patterns 
that could result in the westward shift of 
the surface heat trough were associated 
with the development of surge events. 
One pattern, observed prior to 11 of the 
23 events, featured an upper-level low 
Circulation over, or to the south of, the 
central California coast (Figure 3). For 
the remaining cases, the axis of an upper­
level, short-wave ridge was aligned 
northeast to southwest across northern 
California. At 850 mb, this synoptic 
pattern results in ridging over northern 
California and troughing over the 
southern coastal area (Figure 4). Both 
upper-air patterns can produce low-level 
offshore flow and a shallow marine layer 
(low inversion) to the north, and a deeper 
marine layer (higher inversion) to the 
south. During these conditions, a 
mesoscale alongshore pressure gradient 
·conducive to localized southerly flow can 
result. 
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A noteworthy · observation in the 
preliminary study was that all surge 
events identified began during the 
nighttime hours, i.e., after the last 
available visible satellite image of the day 
and before the first visible image the next 
morning. The mesoscale pressure 
gradient during the nighttime hours is 
important to the nocturnal initiation of 
surges. After sunset, radiative cooling of 
the land reduces the land•sea temperature 
differential, thereby , relaxing the 
macroscale pressure gradient. Macroscale 
northwest winds, which are .sustained by 
the large-scale pressure gradient, also 
subside. A surge can develop when an 
alongshore mesoscale pressure gradient 
exists, featuring higher surface pressures 
to the south. 

Based on this climatology and case study 
analyses of Dorman (1985) and Mass. and 
Albright (1986) a conceptual model of the 
stratus surge emerges: Prior to surge 
development, the upper.:.level ridging 

. exists over northern California. · The 
surface heat trough is .displaced coastward 
from its normal position. This pattern is 
related to lower than normal sea level 
pressures, a low inversion, and clear skies 
.along the central California coast. At th.e 
same time, the marine inversion in the 
south has risen, establishing a localized 
reversal of the normal pressure gradient. 
During the nighttime hours, the 
mesoscale pressure gradient is. enhanced 
by the relaxation of the large-scale 

. gradient and low-level convergence. 
Ageostrophic southerly flow is initiated at · 
the location of the steepest slope of ;the 
inversion. The sloping inversion moves 
northward in a flow field analogous to . a 
dynamic head. The stratus signature of 

.the surge event appears as the inversion 
rises locally to a height above the lifting 
condensation level. 



IV. F 0 R E C A S T M 0 D E L 
DEVELOPMENT AND TESTING 

Drawing on previous studies and the 
conceptual model described above, a semi­
objective forecast technique was developed 
to predict the initiation of stratus surge 
events along the central California 
coastline during the stratus season. A 
"stratus surge" for this forecast scheme is 
defined as the northward progression of a 
narrow band of stratus along the central 
California coast between Pt. Conception 
and Pt. Reyes (Figure 5). The 
progression must be at least 60 nautical 
miles (nmi) in the 24 hour period after 
OOZ. SURGE and NO SURGE forecasts 
are verified using satellite images. 

The forecast scheme was developed using 
the results of an evaluation of satellite 
images, and surface and upper-air 
meteorological observations from the 
months May through October over a 
three year period (1981-1983). The 
technique is composed of two parts, one 
subjective and one objective. In the 
subjective portion, the OOZ (or latest 
afternoon) visible satellite image is 
screened to determine if the potential for 
stratus surge development exists. Once a 
potential event is identified, the objective 
part of the scheme evaluates data from 
the OOZ Oakland sounding and the OOZ 
sea level pressure distribution along the 
coast to make a SURGE or NO SURGE 
forecast. 

In the subjective screening of satellite 
images, it was assumed that a surge 
would not develop if stratus was observed 
along the entire central California 
coastline at OOZ. A potential stratus 
surge was identified if the OOZ satellite 
image showed a stratus free zone 
extending at least 60 nmi offshore and 
120 nmi alongshore south of Shelter Cove 
(Figure 5), but not extending south 
beyond the Mexican border. 
Furthermore, the stratus free zone could 
not be bounded to the west by cold air 
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cumulus clouds within 300 nmi of the 
coast (eliminating strong, post-frontal 
northwest flow situations). The subjective 
criteria are described graphically in Figure 
5. 

For the 525 days during the model 
development period that satellite images 
were available, 170 were classified as 
"potential" surge days based on a review 
of the OOZ images. Stratus surges 
developed in the study area on 41 days 
(24%). No surges were observed on the 
days identified as having "no potential". 
Consistent with the findings of the 
climatology discussed earlier, all surge 
events developed during the nighttime 
hours. 

The objective portion of the forecast 
technique was developed using predictors 
which provided some objective description 
of the marine inversion strength and 
alongshore sea level pressure field at the 
beginning of the forecast period. One 
restriction was that the predictor had to 
be a routine National Weather Service 
observation that was generally available 
for the model development years, and is 
still part of the current NWS data stream. 
A preliminary objective forecast scheme 
was developed using multiple predictors 
including: 

• OOZ surface pressure readings for 
Arcata, San Francisco, Santa Maria, 
Sacramento, buoy 11 and buoy 12. 

• OOZ alongshore and across-shore 
pressure gradients derived from· 
the above listed stations. 

• OOZ Oakland raob mandatory level 
temperature, wind and pressure 
surface height (850, 700, and 500 
mb). 

A forecast model using ten of the 
parameters listed above was developed 
and tested. This initial modeling effort 
demonstrated forecasting skill. However, 



a model constructed using just two of the 
most promising predictors (the Santa 
Maria to San Francisco pressure 
difference [DPSFSM] and the Oakland 
850 mb temperature [T850]) resulted in 
nearly identical stratus surge forecasting 
skill. Since the two-parameter objective 
model had the same skill as the ten­
parameter model, and would be much 
easier to implement in an operational 
mode, it was chosen for this application. 

Frequency distributions of T850 and 
DPSFSM for all potential surge days are 
·shown in Figures 6 and 7, T850 data were 
available for. 164 of the 170 potential 
surge . event days. Data for the missing 
dates were estimated by interpolating 
between the previous and following OOZ 
T850's. OOZ DPSFSM data were available 
for 133 cases. Missing data were 
estimated statistically using the Buoy 11-
Buoy 12 pressure difference, a process 
• described in ·Appendix· 1 and shown in 
·Figure 5. The T850 histogram shows that 
. surges did not occur at the low end of the 
temperature range, i.e., when the 
inversion was too high, too weak, or non­
existent. $urge and non-surge events 
were fairly evenly distributed at the 
higher temperatures. The pressure 
difference histogram presented in Figure 
7 shows a near normal distribution of 
surge events. The mode is slightly 
.negative, that is, surface pressures was 
higher at Santa Maria than San Francisco. 
For the non-surge cases, peak frequencies 
of DPSFSM occurred when the OOZ San 
Francisco surface pressure was slightly 
higher than observed at Santa Maria. 

Based on the frequency distributions 
discussed above, a two-step procedure was 
developed to objectively forecast surge 
initiation for the 170 potential cases. The 
first step consisted of making a NO 
SURGE forecast when the OOZ T850 was 
below 9.8C; the level below which no 
surge events were observed. As a result 
of this test, 22 of the 170 cases were 
eliminated as potential events. 
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The second step of the objective portion 
of the forecast . method consisted of 
making a SURGE or NO SURGE forecast 
for the remaining potential events based 
on the value of DPSFSM at OOZ. The 
pattern shown in Figure 7 suggests that 
there was an optimum San Francisco­
Santa Maria pressure difference threshold 
value above which surges were likely to 
develop, and below which surges .. were 
unlikely to develop. Skill . scores . .were 
calculated to determine the .. optimum 
threshold value to be used to predict 
surge development. The method used. to 
calculate skill score · is presented . iJ;l 
Appendix 2. Results of the skill sd<Dre 
computations, presented in Figure 8, 
indicate that forecasting skill was 
optimized if surges were forecast when 
the OOZ DPSFSM was less than or equal 
to -0.2 mb. 

A contingency table showing the results of 
SURGE and NO SURGE forecasts made 
for the model development data set usirig 
DPSFSM< =-0.2 mb as the predictor .for 
surge development is presented in Table 
1. Over 68 percent (28 of 41) of the 
,surge events and 79 percent (85 of 107} of 
the non-surge events were, correctly 
forecast. The contingency table •;_also 
shows that the probability of surg~ 
development when SURGE was forecast 
was 56 percent (28 of 50). The 
probability of surge development when .a 
NO SURGE forecast was made was 13 
percent (13 of 98). These results indicate 
that the greatest strength of the objective 
portion of this forecast scheme · is. the 
ability to identify non-surge events. Very 
likely this is due to stronger measurable 
macroscale (synoptic) influences in the 
non-surge events and poorly measured 
mesoscale influences in the surge cases. 

The model was tested using data from the 
months of May through October, 1984. 
Satellite images were available for 177 
days during that period. Using -.the 
subjective screening technique, · 67 
potential surge cases were identified. 



Satellite images indicated surges 
developed within 24 hours on 27 (40 
percent) of the potential surge days. All 
surges began during the nighttime hours. 
In no cases were surges identified within 
24 hours of OOZ when the subjective 
screening tests resulted in a NO SURGE 
forecast. 

The 67 cases were further screened using 
the objective portion of the model. Five 
of the potential cases were eliminated as 
NO SURGE cases on the basis of the 
T850 criteria. All were correct forecasts. 
Of the remainjng cases, the DPSFSM 
criteria resulted in 27 SURGE forecasts 
and 35 NO SURGE forecasts. For the 
test data set 74 percent of the SURGE 
forecasts and 80 percent of the NO 
SURGE forecasts verified. Based on the 
contingency table presented in Table 2, a 
skill score of .54 was attained, somewhat 
higher than calculated for the 
development period. Similar to the 
forecast verification pattern for the 
development years, the test year results 
show that the probability of accurately 
predicting non-surge events was higher 
than for surge events. 

A summary of the instructions for 
implementing the stratus surge forecast 
model developed here is presented in a 
flowchart format in Figure 9. One 
feature of the model is that the user may 
exit the model any time a NO SURGE 
forecast is made. In this respect, this 
semi-objective forecast scheme has many 
of the characteristics of a decision tree 
forecast technique in which a logical 
series of questions branch out toward the 
solution of a problem. Ellrod (1989) 
suggests that the decision tree approach 
is well-suited for problems involving both 
subjective and objective criteria. 

V. C 0 N C L U S I 0 N S A N D 
RECOMMENDATIONS 

Past case studies of stratus surge events 
along the California coast by Dorman 
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(1985) and Mass and Albright (1986), and 
the climatological review, proved to be 
useful tools for developing a method to 
forecast that phenomena. The semi­
objective forecast technique developed 
here verified well using an independent 
data set. It provides the forecaster with 
a simple and easy-to-implement prediction 
method, and offers some guidance for the 
future development of better techniques. 

The subjective and objective portions of 
this model give some indication of both 
the macroscale and mesoscale atmospheric 
conditions necessary for stratus surge 
initiation. In summary, those conditions 
allow the marine layer to the south to 
rise, while the marine layer to the north 
remains shallow, resulting in a weakening 
or reversal of the normal pressure 
gradient. Surges were consistently 
observed to develop during the nighttime 
hours when the macroscale northwest 
gradient weakens or reverses due to 
radiative cooling of the land, increasing 
the importance of the alongshore 
mesoscale gradient with higher surface 
pressure values developing to the south. 
A majority of surges were observed when 
the surface pressure was higher at Santa 
Maria than San Francisco at OOZ, but a 
reversal of this pressure gradient was not 
a necessary condition for surge 
development. Since these stations are 
approximately 175 nmi apart, it is 
probable that the spatial scale used to 
defme the pressure gradient in the model 
is too large to identify some mesoscale 
events. 

Alongshore pressure tendency and/or 
pressure gradient tendency, not evaluated 
in this forecast scheme, may provide 
additional skill in forecasting surges if 
included in the objective screening step. 
It may also be possible to improve 
forecast skill by including computer model 
12 or 24 hour forecasts of surface 
pressure patterns. Model output 500 mb 
vorticity advection patterns may also have 
predictor value for forecasting the marine 



layer depth, ·· in response to changes in 
upper-level dynamics: 

No attempt was made to · forecast the 
northward extent of the stratus surge or 
predict the duration of events which may 
be as important as forecasting the· event 
itself. This deserves further study. Also, 
eddies have been observed to form at the 
leading edge of a stratus surge when it 
encounters coastal headlands. Further 
study of this phenomenon may lead to a 
better understanding of the stratus surge 
life cycle and the effect that topographic 
features along the coast have on surge 
duration. 
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APPENDIX 1 

Although DPSFSM data were available for most of the model development and test years 
there were some missing data. In order to evaluate this parameter for all potential surge 
days identified in the subjective portion of the model, a method was developed to estimate 
DPSFSM based on the pressure gradient between BUOY 12 and BUOY 11 (DP1211). 
These buoys are located approximately 30 miles offshore near the northern and southern 
boundaries of the study area (Figure 5). BUOY 11 is located directly west of Santa Maria 
and BUOY 12 is located about 20 miles south-southwest of San Francisco Airport. Available 
OOZ pressure gradient data from both sources (sample size= 285) were statistically analyzed 
using a General Linear Models procedure (SAS 1985). A good correlation was found 
between DPSFSM and DP1211 (R-SQUARE=0.75) and the equation to estimate the OOZ 
DPSFSM using the observed OOZ DP1211 and the slope and intercept output by GLM was: 

DPSFS=D:f>1211 *.7807-0.943 

This equation was used to estimate missing alongshore pressure differences. 
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APPENDIX 2 

Skill scores (S) were are defmed as: S=(R-E)/(T-E), where R is the number of correct 
forecasts, T is the total nUm.ber of forecasts, and E is the number of forecasts expected to 
be correct (Panofsky and Brier 1968). S has a value of zero if the number of, correct 
forecasts equals the number of expected correct forecasts, and approaches unity as forecast 
skill increases. In a purely chance forecast situation, such as a coin flip, the value of E 
is one-half of T. Since surge events were only observed on about one-fourth of the 
potential surge days, E was calculated using the margin totals of the contingency tables as 
suggested by Panofsky and Brier (1968). The expected number of correct forecasts . was 
therefore calculated using: 

E= Ri*Ci/T, 

where Ri is the sum of the ith row and Ci is the sum of the ith column. 
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Figure lA 
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Figure lB 

10 



Figure lC 
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Figure 2.) Example of the the Surface Heat Trough 
Extending Coastward of Its Normal Position 
In Central California. 

Figure 3.) Example of a 500mb Cutoff Low Circulation 
Observed Prior to Some Surge Events. 
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Figure 4.) Example of 850mb Pattern Associated With 
Short Wave Ridge Movement Acrose Northern 
California. 



Zone 2 

125 w 

Sacramento 
• 

120 • 
• 

Figure 5.) Criteria for the Subjective Screening of Visible Band 
Satellite Images to Determine Potential Surge Events. 

LEGEND 

ZONE 1: A Continuous Stratus-Free Area 120 nmi Along­
shore and 60 nmi Offshore Must Be Observed in 
This Zone at OOZ or There is NO Surge Potential. 

ZONE 2: If Cold Air Cumulus Are Observed in This Zone 
at OOZ There is NO Surge Potential. 

ZONE 3: If the Stratus-Free Area Extends South of the 
Mexican Border There is NO Surge Potential. 
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OAKLAND OOZ 850MB TEI~PERATURE 
1981-1983 POTENTIAL CASES 
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TEMPERATURE (C) 
Figure 6.) Frequency Distribution (in 1 degree bins) of SURGE 

and NO SURGE Events as a Function of Oakland 850mb 
Temperature at OOZ; Development Dataset, 1981-1983. 

SFO-SMX SURFACE PRESSURE 
1981 -1983 POTENTIAL CASES 
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Figure 7.) Frequency Distribution (in 1mb bins) of SURGE and 
NO SURGE Events as a Function of SFO-SMX Pressure 
Difference at OOZ. 
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FORECAST SURGE IF SFO-StviX <== LISTED VALUE 
YEARS 1981-1983 

.48l 

.461 
I 
i .44i 

. .42 jl w . 
~ 

8 .41 
~.381 
~ .361 

.34 

I .321 

/ ' 

I 

.3~'--~--~~--~--~~--~~--~--~~.--~~---.~~ 
-.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5 .6 

SFO-SMX PRESSURE DIFFERENCE (MB) 

Figure 8.) Skill Scores Plotted as a Function of the Threshold 
Value of SFO-SMX Used to Forecast Surge Development. 
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SUBJECTIVE SCREENING 

OBJECTIVE 

.. 

Is ~her~ minimum coaa~a! c!earinJ 
as defined in Figure 5 {ZONE 1) 

YES Continue 

Is cold air cumulus developmen~ 
evident within 300 nmi of the 
clear zone? (see Figure S, ZONE 2J 

If NO Continue 

Doee the clear zone ex~end eoutb 
of the Mexican border? (eee J'i~re 6 
ZONI 3) 

If NO Continue 

SCREENING 

ls the OOZ 850mb Oakland RAOB 
temperature less ~han 9.8C? 

lf NO Con·t i nue 

ls the OOZ SFO-SHX pressure 
difference ieee than or equal 
to -0.2~nb? 

If NO Forecast NO·SURGE 

: 

If YES Forecast NO SURGE 

If YES Forecast NO SURGE 

lt YES Forecast NO SURGE 

If NO Forecast NO SURGE 

[ IF YES Forecast SURGE 

figure g.) Sr.rat.us $urge Forecast Flowchart. 

16 



TABLE 1 

CONTINGENCY TABLE FOR DEVELOPMENT YEARS 
1981-1983 

FORECAST TEST: IF DPSFSM<=-0.2MB FORECAST SURGE 

OBSERVED SURGE 
OBSERVED NO SURGE 

COLUMN TOTALS 

FORECAST SURGE 

28 
22 

50 

FORECAST NO SURGE 

13 
85 

98 

TABLE 2 

CONTINGENCY TABLE FOR TEST YEAR 
1984 

: 

FORECAST TEST: IF DPSFSM<=-0.2MB FORECAST SURGE 

OBSERVED SURGE 
OBSERVED NO SURGE 

COLUMN TOTALS 

FORECAST SURGE 

20 
7 

27 

FORECAST NO SURGE 

7 
28 

35 

17 

ROW 
TOTALS 

41 
107 

148 

ROW 
TOTALS 

27 
35 

62 
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